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ABSTRACT

This thesis treats the problem of incompressible two-
dimensional steady flow past airfoils or airfoil combinations
at large angles of attack. A panel method was developed to
compute the inviscid flow over two cylinders, airfoil-flap
combinations and airfoils in ground effect. In addition,
Cebeci's viscous/inviscid interaction method was applied to
several airfoils and compared with available experimental

data. The agreement is generally quite encouraging.
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I. INTRODUCTION

Two important parameters of interest in the field of aero-
dynamics of airfoils are lift and drag. These can be evalu-
ated either experimentally or theoretically. The desire for
computational methods to aid the design process is promoted
by the need to reduce the number and cost of wind tunnel tests.

This thesis treats the problem of incompressible, two-
dimensional steady flow about airfoils or airfoil combinations
at large angles of attack. Such flows exhibit strong viscous
flow effects including regions of flow separation. Therefore
methods are required which can account for these effects.

Currently there exist two main methods, namely the direct
computation of viscous flows by meané of the Navier-Stokes
equations or the so-called viscous/inviscid interaction method.
The former approach is more straightforward but also much more
expensive and time-consuming. Therefore, the latter approach
is to be preferred if it can be shown that it produces good
agreement with the available experimental results.

It is the purpose of this thesis to contribute to the
evaluation of the viscous/inviscid interaction method. To
this end, the viscous/inviscid computer codes developed by
Cebeci and collaboratorsat the Douglas Aircraft Company were
obtained and applied to several airfoils.

In addition, a separate panel method was formulated and pro-
grammed in order to obtain the inviscid flow over airfoil

combinations.
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The basic equations are formulated in Chapter II. Chapter

III addresses the problem of inviscid flow calculations using
the panel method. 1In Chapter IV the solution of the boundary
layer equations by means of the Cebeci-Keller box method is

explained. Finally, Chapter V describes the viscous/inviscid

interaction problem and presents results of computations.
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II. BASIC EQUATIONS

A. INTRODUCTION N
In this chapter, the basic equations of fluid flow are

derived. We find that the resulting equations are PDE's whose

exact solutions exist only in very few cases. The PDE's are

classified, "parabolic," "hyperbolic," "elliptic" depending

on the geometry of their domains of dependence and regions of

influence, and the solution procedures are different according

to the type of equation. Table 2-1 gives a brief classification

of these equations.

TABLE 2-1

CLASSIFICATION OF PDE'S

i tliiptic . Parabolic | Hyperbolic E
|
! /’/7—\_/__\“ a‘_o - xkx ;
i /”‘0"()‘0"; (R IX V.4 |
Ve ” . F o} R - £ i
¢ P o o ° X X
\’Lf_} v o0 ~ %
iPhysical Upstream No Upstream No Upstream
Meaning Influence Influence Influence
!Example * Laplace - Thin Shear - Supersonic i
Equations Layer Flow ;
- Steady Navier- i
Stokes

P 1s perturbation point

52> is domain on which solution
at P depends

. . . n

S>> 1s region of influence of i

a perturbation at P :1

iy
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For example, the Laplace equation is elliptic. Its solution
would have to be repeated for many iterations so that the up-
stream influence can be gradually propagated (panel method in
Chapter III), but the thin shear layer equations are parabolic.

Their numerical solution can be obtained by marching in the

downstream direction only (Box method in Chapter 1IV).

B. DERIVATION OF GENERAL EQUATIONS

The continuity equation and the Navier-Stokes equatians
are basic for an aerodynamic analysis. We start with the basic
physical concepts and derive the general equations for 2-D,

unsteady, compressible, viscous flow.

l. Continuity Equation

One of the basic laws of "Newtonian mechanics" states

that mass can neither be created nor destroyed. Therefore,
for a fixed control volume (see Figure 2.1), the principle of
mass conservation can be stated that the net mass flow rate

into and out of the control volume equals the time rate of

change of mass within the control volume.

If the central point 'P' has representative fluid proper-

ties (velocity, density, pressure, etc.), then properties at
other locations can be obtained by Taylor series expansions.
Therefore the x-component of the velocity at the center of the

positive x-face (right-hand face) is

2
du ,dx du,dx, 21
u+a—x(7) +a——2-(7) -2—!-+ e (2.1)
X
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Figure 2.1. Control Volume for 2-D

As dx goes to zero, all higher order terms will be dropped,
so that only the first two terms will be considered. Similarly,

the density at the center of the positive x-face is

dap dx

Pt 27

Then the mass flow rate out of the positive x-face is

Mass Flow Rate Out (Density) (Velocity) (Area)

m+%%+”Jw+%%+”Jw

lou + S—(ow)E)ay (2.3)

By the same procedure the mass flow rate into the control volume

through the negative x-face (left-hand side) is

16




dx

Mass Flow Rate In = ([pu - %;(pu) 7T]dy (2.4)

From Egs. (2.3) and (2.4), we get the net mass flow rate

through the control volume in the x-direction. iz

_ 3, adx 3, .dx 2

Net Mass Flow Rate = [pu - =—(pu)=5ldy [pu + 3¢ (pu)=5ldy 4

R

? ol
= = W(DU)dx dy (2.5) N
\J

A

%

3 In a similar manner, the net mass flow rate in the y-direction A
X e,
is -

oy 4
i x
. 3 l_':
; - -5—y-(pv)dx dy (2.6) 3
The total mass flow rate through the control volume is f

‘.

obtained by summing Egs. (2.5) and (2.6). o

[ 4

_ g2 3 3

Total Net Mass Flow Rate = -[§§(pu) +§§(pv)]dx dy (2.7) by

:.

N

Next, we consider the time rate of change of mass within .

the control volume. :i

N
Time Rate of Change _ 3 '

of Mass = 3glp dxdy) o

N

= 32 axay (2.8) X

ot W

)
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Now we combine Egs. (2.7) and (2.8) using the concept of

conservation of mass. Then

- _ = 3o
[3%(Pu) + ay(pv)]dx dy = z¢dxdy (2.9)

Therefore we obtain the general form of the continuity

equation for two-dimensional flow as

d (pu) 3 (pv) ap _
% + 3y + T - 0 (2.10)

For steady or unsteady incompressible flow, Eqg. (2.10) reduces to

— + = = 0 . (2.10a)

2. Navier-Stokes Equations

Newton's second law of motion, when mass is conserved,
equivalently states that the rate of change of the momentum of

a body equals the sum of the forces applied to that body, or

(mV) (2.11)

QalQa
(a4

In considering a small volume element of fluid, there are two
types of forces to be considered, namely surface forces which
are acting on the surface and body forces which are acting on
the fluid inside the elemental volume, such as gravity (see

Figure 2.2).
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Figure 2.2.

] +ao x dx
i29yx TTx T2
|
! 90
P [ —— xx @x
1 1 Oxx ¥ 3x 2
Gravity
90 4
g -—2XX gy
l yXx 9y 2
a0
g -—YY 9y

Forces Acting on the Fluid

Assuming that the stresses are known at point 'P', we get

expressions for the stresses on the fluid element surfaces

by Taylor series expansion.

Net force in
Xx-direction due
to Normal Stresses

Net force in
x-direction due
to Shear Stresses

Therefore the total

formed by summation

- [Uxx

aoxx

ax

]
Q

surface

of Eas.

90 < QX
+—§¥— 2]dx —[oy
dx dy

forces in the x-

(2.12) and (2.13

19

(2.12)

X

a0
__,E(. (_i.X] dx
oy 2
(2.13)
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30 90

XX
! f_ (surface) = + Eix] dxdy (2.14)

[ ax

Let (body) be defined as the body force per unit mass with

the following components:
f (body) = XTI+ Y3
Thus, the x-component of the body force is

f_ (body)

X
X

1
3

p dxdy.1-X (2.15)

Adding Egs. (2.14) and (2.15) provides the total force in the

x-direction.

) F, = £, (surface) and f_ (body)
90 30
N XX yX
= lox + 3% + —¥%1 axay (2.16)

Now we consider the rate of change of the momentum of the fluid.

Let us take the x-component only. Then, since the mass is constant,

d > _ du
M| = maFg
X
_ Ju ou Ju
= p dxdy(u sx YV 3y + §E) (2.17)

20
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because, u = f([x(t),y(t),t], and by chain-rule

du _ dudx , dudy, dudt
at x dt T 3y dat T 3t 3t
o g, du, du
= uxxtv oY M T

Substitution of Egs. (2.16) and (2.17) into the x-component

of Eq. (2.11) gives the final equation of motion.

90 30
0X + XX yX

du du du )
5% 3y 1 (2.18)

a—}{-'f'va—y—-i'ﬁ

= plu

Now we want to show the stress in terms of the velocity com-
ponents. In this thesis we will consider only simple "Newtonian"
fluids obeying Stokes' law. This means that the 'extra' stress
(above hydrostatic pressure) is proportional to the rate of

strain. With the definition,

Extra Stress = constant x (rate of strain)

and introducing p = coefficient of viscosity,

= - du
Oxx = P+ ZU(BX)
- Ju IV

where the pressure in an incompressible fluid is seen to be

equal to minus one-third the sum of the three normal-stress

21
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components in view of Eq. (2.10a). In two dimensions then,

Oux T oyy = -2P., Eq. (2.18) then becomes, if the body force

is neglected

90 00
au au du _ _13P 1 ""xx .1 "“xy
T + u % + v 3; = 6 3% + > T3x + > 5y (2.19)

Substitution then produces, for incompressible flow,

2 2
Ju Ju du  _ 1l 5P 3 "a
vtV T "o tvEZt 2! (2.20)

9xX oy
where v = p/p = kinematic viscosity, and similarly for the

y-component

2 2
v v oV _ 1 9"V
2Lty Y s = - 3 3y + \)[—2— + —2] (2.21)

t X Yy 3% 3y

[+%]

These are the well-known Navier-Stokes equations for two-

dimensional incompressible viscous flow.

C. INVISCID FLOW EQUATION
All real fluid flows are viscous, but inviscid flow can

be assumed outside of a thin boundary layer and a narrow wake

behind the body for large Reynolds numbers. This is the reason

why the inviscid flow equations are important even though they
represent an ideal case. If the flow far upstream is uniform
then it is also irrctational. This allows the introduction of

the velocity potential.
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q l. Velocity Potential %3
3 .
{ The velocity potential ¢ is a function whose gradient b
represents the fluid velocity. Thus 5
.b
R
&4

3¢ _ 3¢ _ v

. x - 4 3y v (2.22) o

b,

A

where S

¢ = ¢(err t) .

Therefore, the significance of the velocity potential lies :f

in the fact that one equation for ¢ can be used rather than ey

-

three equations for the velocity components. =

2. Laplace Egquation i

For steady, incompressible flow, the continuity equa- .

tion (2.10) becomes ;

:::

Ju oV _ .

% + .a_y = 0 (2.23) .:_

2

This equation can be written in terms of velocity =
potential ¢ by substituting Eg. (2.22). Thus 3

2 2 -

379 . 370 _

5+ —% 0 (2.24) -

X oy

A

This is the well-known Laplace equation (vector form is V2$ = 0). =

It is a linear equation which makes it possible to apply the %

principle of linear superposition. For instance, ’3

23 =

'u'.'-‘.‘.\.'-.'~.'~_‘._.
'.'.’f.-. sty LSO LIPS
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If ¢l’ ¢2, caay ¢n satisfy V2¢ = 0, then also

¢ = ¢l + ¢2 + ... + ¢n satisfies V2¢ = 0.

Thus the flow resulting from the superposition of incompressi-
ble, irrotational flows is also an incompressible and irro-
tational flow. This superposition principle makes it possible
to build up quite complicated flow from a few simple solutions
of Laplace's equation. The singularity (or panel) methods

presented in the next chapter are based on this idea.

D. THIN SHEAR LAYER EQUATIONS

High Reynolds number flows over airfoils (and other con-

figurations) generate a very thin shear layer (boundary layer)
close to the airfoil surface. If § denotes the boundary layer
thickness and x the distance from the leading edge of a flat

plate, then it is well-known that

§(x) ~ Yvx/U or

§ (x) —m
= ~ /l/Rex

where v is the kinematic viscosity and Rex = Ux/v. This formula

shows that

<< 1 if Re >> 1
X

Hence the flow outside of the boundary layer can be considered
to be inviscid, but the effect of viscosity cannot be neglected

within this layer. Nevertheless, the Navier-Stokes equations
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for steady incompressible flow can be simplified because of

the fact that § is much smaller than the representative length

of the airfoil (the chord length). This can be deduced from

I,P‘

v

the Navier-Stokes equations as follows: ;
2 2
1 3P J u 3 u u au &
3 - == + v({—x + ) = U i— + VvV == (2.25) NN
: p oX 3 %2 8y2 ax 3y i?
t M
' 2 2 ®
1l ap 3°v 3°v v Vv
=S act vt 4+ ) = ua— Vo (2.26)
P 3Y ax p) y ax 3 y _::
s ’
[ u is now replaced by a typical value, say U_; =
X is now replaced by a typical value, say ; X
E y is now replaced by a typical value, say §. ﬁ:
£
Ju c
Then 3y can be expressed by Ue/é; ‘
' du can be expressed by U /%; Ei
X P b4 e ’ ~::
3
3P 2 oy
=x can be expressed by pUe/Q |
(because P and Ue are related by the Bernoulli equations). §
G
Therefore the x-component terms of the Navier-Stokes equation -
can be estimated to have the following magnitudes: -
2 2 -
1 3P 07 u 37u _ Ju ou el
5 X + v (a—x—z + a—y—z) = u 3% + v W )
UZ u2 u2 :;
£ _& & e
) 2 2 e’/

1 25 ~
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A The magnitude of the term v 3y follows from the application

]

U

N of the continuity equation u v _ 0, i.e., — + = =0 or

A s§U 90X ay [ 8

M

B v o~ —72 and therefore

)

d gu o gel% U

n dy  ~ L 85 2

&
-, The two viscous terms are of vastly different magnitude
» 2,2 2 2 2 2

a because 37u/3x" -~ U_/2° and 3°u/3y° ~ U_/8§° hence

Iyt i e e

82u/9y2 >> azu/ax2 and 32u/3x2 can therefore be neglected
: compared to azu/ayz. Finally, the term v azu/ay2 must be of
j the same magnitude as the other terms if the influence of
viscosity is to be retained. The y-component terms of the
Q Navier-Stokes equations are easily estimated to be smaller
j than the x-component terms because
2
U, ¢

% Y )

N

r and hence are smaller by a factor %. Therefore the two
- equations reduce to

3u 3u 1 3p 3%u

5 U“a—x"'va—};:-aﬁ—“*\)a—z (2.27)

. Y
5 B _

) 3y 0 (2.28)

; By adding the continuity equation (Eg. (2.23)) to these rela-

L]

. tions, we get the basic equations to describe laminar flow
o thin shear layers. 4
o, i
: :
2 26 .3
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E. TURBULENT FLOW
We must deal with the instantaneous properties in the
turbulent flow. Thus the time-mean value concept is applied:

u = u+ u’

where u is the time-mean value, and u' is the fluctuating

portion. Similarly,

Introducing these relations into Eg. (2.20)

- - 2 2
— 3du = Ju 1 3P 3 9
Uso + Ve = = ==+ v( + —x)u
ax Yy p 90X ax: ayz
su'u’ su'v'
- ax - ay (2.29)

We can see that pu'u' and pu'v' correspond to a normal stress
and a shear stress. We call these terms turbulent stresses
or Reynolds stresses.

Similar analyses can be done for the y-component equations
and z-component equations in the three-dimensional case. The
extra Reynolds stresses can be summarized by the following

array,
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Much of the effort in turbulent flow studies centers on the

proper modelling of these turbulent terms.
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III. PANEL METHOD

A. INTRODUCTION

The panel method was developed in the 1960's at McDonnell
Douglas by Smith and Hess as a numerical approach for 2-D
and 3-D potential flow problems. This chapter presents the
application of the panel method to 2-D problems about one or
two bodies. The basic idea consists in representing the flow
past a body by a distribution of singularities (sources,
sinks, vortices) on the surface such that the body surface
becomes a streamline.

The numerical approach requires some approximations (the
assumption given in parentheses refers to our approach).

A. The surface of the body is replaced by a finite
number of elements (straight-line-elements).

B. The condition of tangential flow is satisfied at a
finite number of points, the so-called control-
points (midpoints of elements).

C. The singularity distribution of each element is
approximated by some kind of analytical functions
(singularity strengths are assumed to be constant
along any one element, but vary from element to
element) .

The advantages of the panel method in comparison with other

procedures are:

A. The panel method does not include an approximation in
the physics--thin airfoil theory does.

B. The panel method can be easily applied to both 2-D
and 3-D problems--a virtually unsolvable task for
conformal mapping procedures, which are confined
to 2-D configurations only.
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4 C. The panel technique can be readily extended to flow

N fields past several bodies--a task which causes at '
N least some troubles in "classical" mapping techniques.
LY
\

The method's versatility has been proven in various extensions,

Z e.g., hydrofoils, cascades, nozzles, and even complete air-

3 craft. Since its origin the method has been improved by k
) ;
’ features like higher order approximations to both body surface ?
;i and singularity distribution, taking account for compressi- q
§ bility effects, and inclusion of wake models. Today the panel

.

method is probably our most powerful tool in analyzing poten-

s

tial flows.

L 4
A

;‘J

B. NONLIFTING FLOW PAST A BODY ;
The effects of 1lift (respectively, camber and angle of
attack) and displacement (resp. thickness) can be studied
separately because of the linearity of Laplace's equation.
This section is concerned about displacement flows due to the

thickness of bodies, a flow which is usually represented by

SAnALS
s v

<

sources and sinks.
- We will first draw the reader's attention to a single :

. straight-line-element, along which sources of constant strength

are distributed. This simple case allows us to explain the
5 basics of the panel technique. The source strength X is de- E
\% fined as the volume of fluid discharged per unit area. Since
. fluid is ejected perpendicular to the panel's surface in both
i directions, discharge velocities are half of the source E
é strength. The boundary condition for an inclined panel requires ?
2
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E’
: that the normal component of the free stream velocity is :'
"y*
E balanced by this discharge velocity (see Figure 3.1). _j
: A 1':
) 5 = - V,cos B8 (3.1) :
: %
~ 5
o4 o
«a
L
= ¢
> . ool
L . ke
- e
E Vo -N2 .
: et :
t; +N/2 ::.
8 source 4
- panel
< b
L0 o
O o
3 :
3 o : 3.
-g Figure 3.1. Boundary Condition at One Inclined Panel 3
w .
3 R
: This relation between a geometric quantity (£) and the unknown =
source strength establishes tangential flow on the panel -,
surface. X
Things, which are obvious for a single panel, become T
slightly more complicated for a structure of panels. Mutual =
interference of source panels. i.e., each panel induces a
velocity at other panels, causes the complication. While the .
boundary condition of a single panel had been set up by glancing 2
o~
y at a simple geometry sketch, we now better switch to a syste- o>
() :\
; matic procedure, emphasizing the concepts of velocity poten- N
tial and superposition. We consider a 2-D closed body,
o :::
. 31 N
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approximated by several panels and inclined at an angle to
the oncoming flow. Our goal is to derive a relation for the
unknown source strengths from the condition of tangential flow
at the control points. To this end we will give the velocity
potentials of a single source, a source panel, and a closed
body built up by a source panel, in that order.

Radial streamlines and concentric circular equipotentials
characterize one of the very basic potential flows, the single
source flow. Its velocity potential is defined by

single source dp(x,y) = 5%—lnr

where r is the distance from (x,y) to the source. Arranging

single sources on a straight line element corresponds in

terms of the velocity potential to a summation of single poten-
tials, in the limit of an infinite number of sources to an
integration over the panel length. Thus the velocity potential

of a source panel can be written as

)
source panel o(x,y) = 5%
0

m source panels, representing a body, induce a flow field,

whose velocity potential at any point (x,y) is given by

% .
AL j
- J
¢ (x,y) _ ¢>j(x,y) = 4 T [0 ¢n rj dsj (3.4)




AT GOVERNMEII] ¢ Y[ U NSE, ;

REPRODUCED

¢

( xﬁ" u.Vm

: Control points are
midpoints of panels

: Boundary points

Figure 3.2. Designations for Calculation

We call ¢ the potential of the flow disturbances due to the dis-

placement flow. The total velocity potential of a nonlifting
flow results from a superposition of this displacement flow
and a uniform flow, which is inclined at an angle a to the

X-axis.

m .
¢(x,y) = V_cosax + V_sinay+ } 5% / Ln ry ds.

Recalling the definition of the velocity potential (velocity
equals gradient of potential), the boundary condition of tan-

gential flow takes the form

Q

3% 0 on the surface

Q?

Applying this condition within the framework of the panel

method provides a system of equations,
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: &
Ve, COsa cosB; + V_ sina sinBi + _? ;% / ? %Hf(zn rij)dsj = 0 %

j=1 0 i X

for i=1,...,m (3.5) ‘ﬁ

2

!

which establishes zero normal velocity at all control points. - ?

This linear system can be solved for the unknown source ;

strengths after the integrals have been evaluated. ?‘

Concept of influence coefficients ';

y The influence coefficiént, Iij' is defined as the normal 2
. velocity at the ith panel due to a source distribution of EL
2r-strength at the jth panel. i G

T

t*d

! o 13

Iy / ani(san r;4) 48y (3.6) R

‘ Ky

¢ N

b A

p The contribution to the normal velocity at the ith panel by 24
b

h

¢’

the actual source distribution of the jt panel is the product

of Aj/Zn and the influence coefficient Ij To compute the

jc
influence coefficient we must substitute

2 2 o
ryy < ‘/(xM_l -xj) + (yMi —yj) 3

‘o

in Eq. (3.6) and carry out the differentiation.

Qj (xM.-xj)(Bxi/ani)+(yMi-yj)(Byi/ani)

I.. = | = as. (3.7
I 0 (xM —xj)2 + vy -yj)2 J
i i

XA
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Y where
axi
== = COs B.
. ani i
|
Y.
p i _ .
' . ani = sin Bi
p
1 X. = Xx + S. cos 6.
[ 3 B ] )
b
r
. = + S, sin 6.
y3 yBj J J

The integration covers the length of the jth panel. Finally

we obtain

-(x

Equation (3.8) is expressed in terms of Sj only and, after

some manipulations, the integral mav be written in the form

/Qj b -cS,
.= —_—d (3.9)
1] 0 s% -eS. +f
] ]
where
b = (xMi-xBj)cos Bi + (yMi-yB.)Sln Bi

9]
i

cos ejcos Bi + sin ej51n Bi

35

| . : Bj+sjc°sejﬂc°ssi+[yMi-(yB.+SjSinej)]Sinei o
I.. = )
ij _ 2 _ . 2 j
0 [xy (xB.+Sjcosej)] +[yM. (yB_+st1nej)]
1 J 1 J
(3.8)
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e = 2 cosej(xMi-xBj) + 2 51n6j(yMi-yB.) : ;

- 2 2
£ = (xy -xp )" + (yy -yg )
i 73 i 73

The integration can now be performed analytically,

2. % X
Jj _ 2S.-e J “
i3 = - Stin|si-esy+]] T+ (arctan —L— (3.10) ;
¢ Vif-e Vag-e? 0 N

Determination of unknown source strengths A

Equation (3.5), expressed in terms of Eg. (3.9) and divided

by V_, takes the form

m . ,_-
' ' = - - : : <
mAL + j£1 Ainj COS acos Bi sin asin Bi (3.11) X
j#i -
5 where "
A
2! = } K
21V -
or in the more convenient matrix form A
¢ TN o s C &
Ill I12 e Im Al cosacosBl 31na51nbl N
L2
| - - 3 M »
121 AZ cosa00582 51na51n82 b
, _ s .

| Iml Imm‘ LAm/ i cosacosBm 51na51n8m)
(3.12) -
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The above set of linear equations can be solved for Aﬁ by
Gauss' elimination method or any other linear equation
algorithm.

On-body velocities

The velocity at the midpoint of the ith panel, V can

S.
i

be obtained by a spatial derivative of the velocity potential

in tangential direction.

Si aSi
X Y, m o(&n r,..)
i . i i
= V_(cosazz=+ sinazg—+ ] ! [ ds.)
8Si asi j=1 J 3 3Si 3
(3.13)
where
ifi = cos §
asi i
iZi = sin 6
35, n vy
Therefore
VS m
(v;)i = cos acos 8, + sin asin g; + jZl A Jij (3.14)

[T}

where Jij / é——(Qn rij)dsj denotes the tangential velocity

. 085,
j i
panel due to a source distribution of 2n-strength

at the ith

at the jth panel.
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The calculation of Jij follows the same procedure as that

of I.., so

1]
fzj b -cs,
L. = ds. (3.15)
1] 0 s%-es. +f I
J J
where
b = (xM.-xB_)cos ei + (yM_-yB_)sin ei
i 3 i
C = cos 6. cos 6, + sin 6. sin 6.
] 1 J 1
e = 2 cosej(xM_-xB') + 2 Slnej(yM.-yB.)
1 J 1 J
_ _ 2 _ 2
£ = (xy =xg )" + (yy -vg )
i 3 i j

Positive signs of on-body velocities indicate that velocities
are oriented in the direction of the surface coordinates,
while negative signs indicate opposite directions of veloci-
ties and surface coordinates. The positive direction of
surface coordinates is defined clockwise. Therefore positive
values of on-body velocities are to be expected on the upper
surface, negative values on the lower surface.

Off-body velocities

Streamlines can be determined by computing velocities at

off-body points and using a numerical quadrature to progress

38
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4
from one point to another point on a streamline. The velocity k
Ol
components can be expressed according to ‘:
X
\ o
b 30 (x,,y.) m ) -
= 1 1 = _l L o
g Ulx,,y;) T V_cos OH.-Z 7= ,fax. SLnrij ds] X
] i j=1 3 i
5
el
¢ (x,,y.) m A .
, 9 R
Vix.,y;,) = —_— = v,.sin a+t Z —lf ~—- &nr.. ds o
i1 ayi j=1 2T 3 2 i i] -
Normalizing the above equations by the free stream velocity «:
k4
and abbreviating the integrals simplify the relations to =
:.-
\-::
U(x,.,y.) m -
1 X -
= cos a + ) ! IT. (3.16) e
Vo j=1 J 1] >
Vix:,y;) m -
2 = sina+ § Al IY, (3.17)
v : 1]
o J=l
I)icj and Ili"j are again influence coefficients, whose evaluation :
-
can be adopted from the already introduced procedure. "
2. “
J b, -C_S. .,
o= [ S X J gs, (3.18) o
] 0 S, -eS. +f J
J ]
7
J"
2. -
j b, ~-C. S. e
. = [ L ¥ as, (3.19) b
+J 0 8% -es, +f
J ] -
-
o
t'.-‘
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where

v v e

W W WY

C = cos 0. C sin 6. v
J J

A

(]
I

2[(xi—xBj)cos 6j + (yi-yBj)sin ej)] h
b A

AR 1'—»' o~

2 2
(xi —xBj) + (yi -yBj)

Hh

]

[P N <
Ay 2y 2 Y

Ay

‘-l

C. CIRCULATORY FLOW

While inviscid 2-D flow theories are not capable of pre-
dicting drag characteristics, information about lift can be
provided by them. Creation of 1lift is closely related to a
type of flow called circulatory flow. We mentioned already . ~§
that the flow around a lifting airfoil can be decomposed into ﬁ
two elementary flows, i.e., displacement flow and circulatory =
flow. Circulation and circulatory flows are the subjects of
this section.

The early approaches of airfoil theory emphasized a flow

s

model in which the airfoil was represented by an infinitely

LRy
.

thin vortex sheet only. This so-called thin airfoil theory }%
predicts lift quite well, because 1lift depends primarily on
circulatory flow. Unfortunately a straightforward extension

of vortex sheets to "surface singularity" method is impossible. . t?

Therefore aerodynamicists have proposed a couple of flow models,




which allow the implementation of circulatory flows in
"surface-singularity" methods. Examples are:

(1) Smith and Hess represent circulatory flows by a com-
bination of source and vortex distributions. [Ref. 1]

(2) Martensen prefers vortex distributions only, but states
the problems in terms of the stream function. [Ref. 2]

(3) Davenport makes use of linearly varying vortex
distributions. [Ref. 3]

Our approach follows the ideas of Smith and Hess. These circu-
latory flows are composed of a vortex distribution, which is
constant along all and for all panels, and a source distribution
of conventional shape.

We start at the very beginnings of vortex flows. Concentric
circular streamlines and radial equipotentials characterize the

flow field of a single vortex. Its velocity potential can be

written as

single vortex ¢ (x,y) = - 22 %= v (3.20)

with (xv,yv) as the center of the vortex. A structure of m
vortex panels induces a flow field, whose velocity potential

at any point (x,y) is given by

J

L.
m ] Y-v.
1
d)(X,Y) = r 2 (- -2—71’)'{0 arctan ;_}EJ.- ds. (3.21)

3=1

This flow field differs in two important points from the non-

PR AO0K

lifting flow field:

PR |

(1) It violates the condition of tangential flow.

YA

(2) The unknown singularity strength ' cannot be
determined immediately.

W T W,
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The task of determining circulation must be postpohed to the
implementation of the Kutta condition. Temporarily we set
the vortex strength equal to one. Tangential flow must be
established by the aid of an additional source distribution.
Strengths of this additional source distribution must be com-
puted according to the condition that the normal velocities
due to the vortex distributions at the control points are

balanced by the normal velocities due to the additional source

distribution.
? ol [/ & en(r,.)ds ? [ 2 _(tan’! ZLZ—i)d
~— in(r,. . = ~——(tan S.
j=12W i ani ij j j=1" 5 Bni X, xj j

Abbreviating the integrals by the above defined influence

coefficients, we get

Agl) I(s)

m
1 N v
521 3 ij

i for i=1,...,m (3.22)
1

I ~—8

3

where
Agl) are the unknown strengths whose effect is intended
] to balance the normal velocities induced by a unit
vortex distribution.
Iis) is the normal influence coefficient due to a source
J distribution.
IiY) is the normal influence coefficient due to a vortex
) distribution.
Jis) is the tangential influence coefficient due to a
) source distribution.
Jé;) is the tangential influence coefficient due to a

vortex distribution.
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Since influence coefficients of source and vortex distributions

are related by Iég) = -Jé?’, the above equation can be expressed

according to

m m
1l
I - § e

th
0O
2]
-
I

l1,...,m (3.23)

(1)

By solving this system for Aj , we determine the properties

of circulatory flow of unit strength.

Calculation of disturbance velocity due to unit circulatory
flow

The disturbance velocity, VéV), is composed of two parts,

one due to the constant vortex distribution, the other due to

the additional source distribution

m
s, m e
O R L R i]

<
NJ

H
e~3g

(3.24)
j

Making use again of the relation between influence coefficients

(JFY) = 1??’), we have
ij ij

m m
vVl =y sy 7 W) gs) (3.25)

1 3 ij

D. SYNTHESIZING A COMBINED FLOW

The Kutta condition serves as matching condition for nonlift-

ing and circulatory flow. These two basic flows must be
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superimposed such that flows of upper and lower surface merge
smoothly at the trailing edge. This original version of the
Kutta condition is usually substituted by the condition of
zero load (or equal velocities on both upper and lower sur-

face) at the trailing edge (see Figure 3.3).

Figure 3.3. Single Airfoil: Superposition of Nonlifting
and Circulatory Flow, Controlled by the
Kutta Condition

Since the panel method does not permit the evaluation of
velocities at the trailing edge, the Kutta condition is satis-
fied approximately by requiring that velocities at the control
points of the rearmost panels have equal magnitude. Therefore
the rearmost panels should be chosen short so that flow at
their midpoints will effectively represent that at the trailing
edge.

Determination of circulation
th

Suppose ISt and m panels are the closest panels to the trail-

ing edge on the lower and upper surface, then we can write the

,
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Kutta condition as

_u(N) (v) _ (N) (v)

vy Fvl = vV, + Tvm (3.26)
where é?’denotes the tangential velocity in nonlifting flow.
Equation (3.26) can be solved for the circulation T.

Calculation of on-body velocities and of pressure coefficients

Three parts contribute to the total velocity: free stream,
disturbance due to displacement flow and disturbance due to
lifting flow. Say V(N) designates the velocity due to the
nonlifting flow including the free stream component and V(V)
represents the velocity due to a lifting flow of unit circu-
lation. Then the total tangential velocity at the midpoint of

th

the 1 panel is given by

.= (N) + FV(V)
i i i

(3.27)
Once the velocity has been computed, the pressure, customarily
expressed by means of a dimensionless coefficient Cp, is

determined by Bernoulli's equation:

Pi “Pa Vi 2
Cp = 1—-—7— = 1l - (V—) (3.28)
i =pV o0
2 o

Addendum: More than one body configuration.
One of the main advantages of the panel method is its

easy extension to multi-element airfoils. As a matter of
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fact even flow past an infinite number of bodies can be solved

by means of the panel method, if these bodies are arranged in

form of cascades. The minor changes, which are necessary to

apply the panel method to a finite number of bodies, include: .

(1) The overall scheme must provide a circulatory flow
for each lifting body. (The number of nonlifting
flows remains one.)

(2) Flow past each body with lift is subject to a Kutta
condition. Accordingly the numbers of equations
reguiring zero load at the trailing edge equals the
number of circulatory flows, which allows the
definite determination of each lifting body's
circulation.

Figure 3.4 illustrates the superposition of nonlifting. and

circulatory flows for a two element airfoil.

J
\

Figure 3.4. Two Element Airfoil: Superposition of
Nonlifting and Circulatory Flows
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E. EXAMPLES

This section illustrates the capabilities of the program
"PANEL" which can be applied to 2-D potential flow problems
past one or two bodies.

Flow past one circular cylinder

The source panel technique is applied to the flow past
a circular cylinder. This case is regarded as nonlifting,
i.e., the cylinder experiences no force perpendicular to the free
stream. As sketched in Figure 3.5, the surface of the cylinder
is approximated by eight panels of equal width. For zero angle

of attack, Eg. (3.5) reduces to

0 (3.29)

o]
n
-
]

Solving a set of 8 simultaneous algebraic equations, the source

strengths and the pressure coefficients can be determined.

\j

Figure 3.5. Arrangement of Panels on a Circular Cylinder
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The results are shown in Figure 3.6 where they are com-

pared with analytical results (Cp =1 -4sin26).

Ff J R

=

1.0 20

Ve {'('fl")". :

CP

-4.0-3.0 -30 -1.0 0.0

1718 g

OVE

=
-2
5
-3

Figure 3.6. Pressure Coefficient on a Circular Cvlinder
Obtained by Using Eight Source Panels
(Marked by 0) in Comparison with the Exact
Solution

=i

This example demonstrates the power of the panel method.
However the reader should be aware that only 8 panels are not
sufficient to describe the geometry in most of the cases.
Basically the achieved accuracy depends on both the shape of
the body and the panel configuration (number of panels and
local widths). A closer spacing is advisable in regions where
severe changes of the pressure distribution are expected

(e.g., leading edge).




Flow past a pair of circular cylinders

Two circular cylinders are arrangedside-by-~side in a uni--
form stream. The surface of each cylinder is replaced by 50

panels of equal width (see Figure 3.7(a)). The computed

T

velocity distribution on one of the cylinders is shown in
Figure 3.8(b). The reader shall pay some attention to a
comparison between the flow past one and the flow past a pair
[ of cylinders. Obviously the maximum velocity is increased
by the existence of a second cylinder. The closer the two

cylinders are arranged, the higher the maximum velocity.

While the stagnation points in a single cylinder flow are

located at the farthest down and upstream points of the cylinder,

the disturbance of a second cylinder causes the stagnation

points to move towards the other cylinder. The streamline

picture, given in Figure 3.8, should provide a deeper under-

standing of this kind of flow.

Flow past two element airfoil

The main goal of leading and trailing edge devices is to

obtain a higher lift coefficient. We will investigate the

effect of a single slotted flap on the pressure distribution

of the main airfoil.

The pressure distributions of a single airfoil and of an

airfoil-flap combination are compared in Figure 3.9. The

coordinates of both main airfoil (a NACA 4412) and flap are

listed in Section F (sample input data). The results indicate

that 1lift increases more than 50% by using a slotted, 21.5

degree deflected flap.

................................
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Figure 3.7. (a)Arrangement of Panels on Two Cylinders
Side by Side ) N
(b)Calculated Velocity Distribution on One "
of Two Identical Circular Cylinders Whose X
Centers Are One and a Quarter Diameters : R
Apart *J
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Figure 3.9. Pressure Distributions on a Single and

N a Flapped Airfoil
N
h)
“
Airfoil in ground effect
Flow past an airfoil in ground effect is another applica-
- tion of our program.

The boundary condition at the ground reguires vanishing
normal velocity there. We meet indirectly this condition by
arranging the second, imaginary airfoil such that the ground

becomes an axis of symmetry of this "new" flow field (see

52
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Figure 3.10). Since an axis of symmetry must be impermeable

to fluid particles, the desired flow is obtained without
explicitly satisfying the boundary condition at the ground.
This kind of flow is a challenge to aerodynamicists for several
reasons. Whenever an airplane takes off and lands, it passes

a zone where flow is severely affected by the proximity of the
ground. Wind tunnel experiments must be corrected for wall-
effects, quite a similar situation with grounds below and above
the airfoil. B2and there was a German experimental seaplane

that makes use of flying very close to the sea level. However,
our numerical experiments will tell only one part of the story

because all these flows are highly 3-dimensional.

Peal
TC\
h
Ground
..... ' Image

Figure 3.10. Airfoil in Ground Effect

Let's first question how does the pressure distribution

change near the ground. Figure 3.11 shows that lift is reduced
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Figure 3.11. Pressure Distributions on a Single NACA 4412 ‘s
and on a NACA 4412 in Ground Effect

(h/c = 0.2, a = 5°) :
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Figure 3.12. The Lift of a NACA 4412 Near the Ground
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on the upper surface and increased on the lower surface. 1In N
the particular case the overall lift gain is about 15% of the Y
I lift in free air, but we might not always expect a lift gain. i:
The actual balance between lift reduction on the upper and Eé
lift increase on the lower surface depends on both distance gf
- from the ground and angle of incidence. Figure 3.12 confirms %
that there are cases with less lift than in free air. High ?-
angles of attack and moderate distances from ground are sus- 5
ceptible constellations to lift loss. .:
F. I/O--DESCRIPTION AND LISTING OF THE PROGRAM "PANEL" .i
This program calculates non-lifting and lifting potential 2
flow past one or two bodies. Any 2-dimensional shape and -
any angle of attack, which do not cause flow separation,
are acceptable.
Input data 7
The data must be arranged in the following order: é
(1) Header card; i
(2) Coordinates of first body cards (variable number of .5
cards) ; o
(3) Second body control card; -
(4) Coordinates of second body cards (variable number of >
cards) . >
Items 3 and 4 are used only for the 2-body case. The actual i
instructions are as follows. ;
Header card E;
g
1-10: Number of bodies (integer) Ei

11-20: Number of points of the first body (integer)

! 21-30: Angle of attack in degrees (real)

o
.
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o Coordinates of first body cards 5

The input procedure of body coordinates requires the follow- §
ing sequence: start at the trailing edge, progress on the -
: lower surface to the leading edge, return on the upper surface n §
: to the trailing edge and finish with the trailing edge. The ﬁ
trailing edge of closed bodies is input twice, as first and {
last point. However airfoils with finite trailing edge thick- E
ness should be treated as non-closed bodies, i.e., the last :
point input is not the first point repeated. :
- 1-10: X coordinates of the points defining the body (real) Ei
A 11-20: Y coordinates of the points defining the body (real) :é
y Second body control card "
1-10: Number of points of the second body ?
Coordinates of second body card g:
The X- and Y-coordinates of the an body are input in the t;
same format as the coordinates of the first body. :;
Output i
There are two kinds of solutions, non-lifting and lifting,
both of which are preceded by the following column header. ;
PANEL X Y \% Cp
where ‘;
PANEL is the number of the panel; Ei
X and Y are the coordinates of control points (not E:
boundary points); =~
V denotes the relative velocity (V/V_); and ;E
Cp denotes the pressure coefficient. g
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Sample problem

-

This sample illustrates program input and output. The

W

data refer to the airfoil-flap example of Section III.E

. (see Figure 3.9).
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B .

35 l0.
. .0
.95 -.0016
.90 -.0022
.80 -.0039
.70 -.0065
.60 -.01
.50 -.014
.60 -.018
.30 -.0226
.25 -.025
.20 -.0274
.15 -.0288
10 -.0286
075 -.0274
05 -.0249
.025 -.0195
.0125 -.8143
.0125 .024
.025 .0339
.05 .0473
.075 .0576
.10 .0659
.15 .0789
.20 .08380
.25 .0941
.30 .0976
.40 .0980
.50 .0919
.60 .0816
.70 .0669
.80 .0489
.90 .0271
.95 .0147
1.0 .0
9
1.25 -.15
1.20 -.14
1.15 -.125
1.05 -.08
1.0 -.05
1.05 -.06
1.15 -.09
1.20 -.115
1.25 -.15
58
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NONLIFTING SOLUTION

PANEL XM M v cP
1 0.97500 -0.00080 ~-3.05132 -8.31055
2 0.92500 -0.00190 ~1.71788 -1.95110
3 0.85000 -0.00305 -1.43382 -1.05583
G 0.75000 -0.00520 -1.20962 -0.46318
5 0.65000 -0.00825 -1.11906 -0.25229
6 0.55000 -0.01200 ~1.07063 -0.164625
7 0.45000 -0.01600 ~-1.03543 -0.07210
8 0.35000 -0.02030 -1.01792 -0.03616
9 0.27500 -0.02330 -0.97360 0.05210
10 0.22500 -0.02620 ~0.98046 0.03876
11 0.17500 -0.02810 -0.97498  0.04942
12 0.12500 -0.02870 -0.95981 0.07876
13 0.08750 -0.02800 -0.92946 0.13613
16 0.06250 -0.02615 -0.90437 0.18212
15 0.03750 -0.02220 -0.81613  0.33393
16 0.013875 -~0.01690 -0.66716 0.55489
17 0.00625 -0.00715 -0.06606 0.99564
18 0.00625 0.01200 1.20372 -0.44893
19 0.01875 ©0.02895 1.51676 -1.30050
20 0.03750 0.04060 1.46366 <-1.16230
21 0.06250 0.05245 1.45104 -1.10550
22 0.08750 0.06175 1.46313 -1.08263
23 0.12500 0.07240 1.40582 -0.97632
24 0.17500 0.08345 1.38729 -0.92458
25 0.22500 0.09105 1.36530 -0.86405
26 0.27500 0.09585 1.34796 -0.81696
27 0.35000 0.09730 1.24546 -0.55117
28 0.45000 0.09495 1.15851 -0.342164
29 0.55000 0.08665 1.07036 -0.14566
30 0.65000 0.07415 0.96331 0.07203
31 0.75000 0.05790 0.832090 0.32612
32 0.35000 0.03800 0.55160 0.69573 Ea
33 0.92500 0.02090 0.37152 0.86197 ‘
34 0.97500 0.00735 -0.86208 0.25681 "
35 1.22500 -0.14500 ~2.69361 -6.2564647 =
36 1.17500 -0.13250 ~1.67615 -1.80278 -
37 1.10000 -0.10250 ~0.59326  0.64806 &
38 1.02500 -0.06500 1.34805 -0.81725 o
39 1.02500 -0.05500 3.04627 -8.27976
40 1.10000 -0.07500 1.49617 -1.23852 v,
41 1.17500 -0.10250 0.51932 0.73031 .
62 1.22500 -0.13250 ~1.15598 -0.33629 x
3
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XM

YM
-0.00080
=0.00190
-0.00305
-0.00520
-0.00825
=0.01200
-0.01600
-0.02030
~0.02380
-0.02620
-0.02810
-0.02870
-0.02800
-0.02615
-0.02220
-0.01690
-0.00715

0.01200
0.02895
0.04060
0.05245
0.06175
0.07240
0.08345
0.09105
0.09585
0.09780
0.09495
0.08665
0.07415
0.05790
0.03800
0.02090
0.00735
-0.14500
-0.13250
-0.10250
-0.06500
-0.05500
-0.07500
-0.10250
~-0.13250
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LIFTING SOLUTION

-1
-0

~-0.
-0.
~-0.
.60672

-0.
.52361
.67182
.631388
.35514
.22992
.07829
.09794
.47846
.09475
.62874
. 46087
.13743
.71609
.480446
.36667
.20878
.08988
.00707
.94596
.81808
.69455
.60093
.51477
.43499
.33681
.28963
.09525
.86324
.79007
.43515
.41219
.91951
.49954
.23353
.86324

-0
-0
-0
-0
-0
-0

L
O OOOO It s = = = N NN NN NN~ OO

s

Y

.09525
.80975

71356
65850
63122

56660

CP
-0.19958
0.34430
0.49083
0.56638
0.60157
0.63432
0.67897
0.72583
0.77738
0.81348
0.87387
0.94714
0.99387
0.99041
6.77108
~0.19848
-6.89880
-10.97764
-8.84344
-6.37716
~5.15257
-4 .50686
-3.87871
-3.36759
-3.02833
-2.78674
-2.30540
-1.87149
-1.56299
=1.29451
-1.0592¢0
-0.78706
-0.66263
-0.19956
0.25482
0.37579
0.81064
0.83010
-2.6846453
~1.24862
-0.52159
0.25482
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Program listing

! ’ .ECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

THIS PROGRAM CALCULATES 2-D POTENTIAL FLOW PAST 1 OR 2-BODIES
AT ANY ANGLE OF ATTACK.

c

E

Cc WRITTEN BY : CAPT LEE,HEE WOO
g DATE : NOV.28 1985
c
c
c

O0O00O0O0O0

NOTE : MAXIMUM NUMBER OF PANELS = 200

ccceeecececcececceccceeccececcececececcececccececccceccececceccceccceccecececccccccccceccee
DIMENSION Z(200,200),XB(200),YB(200),BEC200),TH(200),V(200)
DIMENSION WKAREA(65000),XM(200),YM(200),VVV(200),VC(200)
DIMENSION CP(200),VV(200),Y(200,200),A(200),V1¢(200),51€200) ]
DIMENSION VC1(200),VC2(200),V2(200),VT(200) K

C
C --- READ INPUT DATA (FOR FIRST BODY) =---
c

READ(4,1) NB,NN,AN
1 FORMAT(2I10,F10.5)
AN = AN%3.141592/180.
DO 10 I = 1,NN
READ(4,11)XB(I3,YB(I)
FORMAT(2F10.5)
CONTINUE

C --- CALCULATE MID-POINTS OF PANELS AND ANGLES THETA ---

C
N = NN-1
DO 12 I=1

s, .',-,‘_-, &
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XB(I)+XB(K))/2.
YBCID+YB(K))>/2.
BCK)=YB(I))/(XB(K)-XB(I))
ANCTHH)

LLT.XBCI)) THCIX=TH(I)+3.1641592

4, 4, 0 X, 44
xR
X
~
-4

—
X
~
-

—f =l

(12 CONTINUE
5 C --- CALCULATE PANEL LENGTHS ---
Y
o DO 13 I = 1,N L
N K = I+l
N ACI) = SQRTCCXBCK)-XBCI))%%2+(YB(K)-YB(I))%x2)
13 CONTINUE

IF(NB.NE.1) GO TO 600 :

= CCCOCECOCCCECCeeeeeeeeeeeeeeeeeeeCeeeeeeeeeeceeeeeeeeeeeeeeeeeeees ’
c

c NON-LIFTING PART (1-BODY) C

c C
« CCCCCC%SCgECECCCECgCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
o =1,

c
% C --- CALCULATE ANGLE BETA AND NORMAL COMPONENT OF FREE STREAM
% VELOCITY =---

gl
a6

+3.14159272.
BECI))XCOSCAN)+SINCBECI))XSINCAN))

oOx
-0~
- -
a1 %4

L VL Y.

61

;
a4
!
)
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CALCULATE INFLUENCE COEFFICIENTS OF NORMAL VELOCITY ---

IF(I.EQ.J) GO TO 15
(XM(I)~XB{J)IXCOSCBECI))+(YM(I)-YB(J))I%SIN(BE(I))
COS(TH(J))I*COS(BECI))+SINCTH(JI)IXSIN(BE(I))

COSCTH(J) I®X(XM(I)~XBCJ))+2 . XSINCTH(J)IIX(YMC(I)-YB(J))
(XMCI)=XB(J)I%%2+(YM(I)-YB(J))*x2
SQRT(4.%F-Ex%2)

Z(1,J) = TEG(B,C,E,F,H,AC(J))

15 CONTINUE

Z(I1,1)=3.1641592
16 CONTINUE )

QO
[]
]
]

B
C
E = 2.
F
H

0w uxun

c
g --- SOLVE SET OF LINEAR EQUATIONS FOR SOURCE STRENGTHS -~--
IDGT = 0
c CALL LEQT2F (Z,1,N,200,V,IDGT,WKAREA,IER)
g —== CALCULATE INFLUENCE COEFFICIENTS OF TANGENTIAL VELOCITY ---

D0 16 I = 1,N
DO 17 J = 1,N
IF(I.EQ.J) GO TO 17

B = (XMC(I)-XB(J))¥COSCTHC(I))+C(YM(I)-YB(J)IXSIN(TH(I))
C = COSC(TH(J))IXCOSC(THCI))I+SINC(TH(J)IIXSIN(TH(I))
E = 2.%COS(TH(J))I*®(XM(I)-XB(J))+2.%xSINCTH(J))%(YM(I)-YB(J))
F = (XMC(I)=-XBCJ))I®NX2+(YMCI)-YB(J))I%x%2
H = SQRT(4.X%F-EXx2)
Y(I,J) = TEG(B,C,E,F,H,A(J))
17 CONTINUE

Y(I,I)=0.0

c16 CONTINUE

g === CALCULATE TOTAL VELOCITY AND CP AT MIDPOINTS OF EACH PANEL ---

WRITE(8,95)
95 FORMAT(///,25X, *NONLIFTING SOLUTION',//
X%gxi;P?NELi.aX,'XM',SX,'YM'.llX.'V'.lOX.'CP')

RFPRODUCED AT GOVERNIICHIT §F ¥1 8 HISE

$=0.
DO 19 J = 1,N
S = S+V(JIXY(I, NN
19 CONTINUE
VV(I) = COSCTHCI))*COSCAN)I+SINCTHCI))IXSINCAN)+S
CP(I) = 1.-VV(I)*xx2

WRITE(8,93) I,XM(I),YM(I),VV(I),CP(I)
93 FORMAT(10X,I3,3X,2F10.5,3X,2F10.5)
18 CONTINUE
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE

c
C LIFTING PART (1-BODY) g
c
ECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C =--- CALCULATE SO0URCE STRENGTHS DUE TO CIRCULATORY FLOW OF UMNIT
C STRENGTH ~---
c
. DG 20 I = 1,N

S =0,

bo 21 J = 1,N

S = S+Y(I,J)

21 CONTINUE

26 CONTINUE
IDGT = 0
CALL LEQT2F (Z,1,N,200,V1,IDGT,WKAREA,IER)

V1(I)=S

»
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i
: ‘:
I c N
) C --- CALCULATE DISTURBANCE VELOCITY DUE TO CIRCULATORY FLOW OF UNIT NS

¢ STRENGTH =--=
c -
DO 221 = 1,N Ny
S = Q. o
. DO 23 J = 1,N 9
S = S+Y(I,J)XV1(J)I+Z(I,J) -
23 CONTINUE N
VC(I)=S h

. 22 CONTINUE
c .
_C === CALCULATE VORTEX STRENGTHS BY KUTTA CONDITION --- -
c Y
SI = =(VVC(1)+VVIN))I/(VC(1)+VCIN)) b
c v:]
C --- CALCULATE TOTAL VELOCITY AND CP AT MIDPOINTS OF EACH PANEL --- o
¢ ]
WRITE(S,96)

' 96 FORMAT(///,27X, 'LIFTING SOLUTION',// <
= %10X, "PANEL', 5X, *XM",8X, 'YM',11X,'V',10X, 'CP') N
b DO 26 I =1,N ’

VVV(I) = VVCI)+SI*VCC(I) b
CP(I) = 1.-VVV([)%x2 ;\

WRITE(8,93)I, XMCI),YMCI),VVv(I),CP(I) S
26 CONTINUE 3

25 FORMAT(3F10.5) ‘
c GO TO 700 NS
g ~-—- READ INPUT DATA (FOR SECOND BODY) --- QE
600 READ(G,31) MM i

3 31 FORMAT(I10) "\,

< DO 32 I = NN+1,NN+MM '

READ(4,11)XBCI),YBCI)

32  CONTINUE e

~ . M = NN+MM-2 N
C --- CALCULATE MID-POINTS OF PANELS AND ANGLES THETA --- 2

c .

DO 33 I=N+1,M R
K = I+1 =

XMCI) = (XBCK)+XB(K+1))/2.

YMCI) = (YB(K)+YB(K+1))/2. ]
THH = (YB(K+1)-YB(K))/(XBC(K+1)-XB(K)) Y
: TH(I)>= ATANCTHH) ',t.
- IF(XBCK+1) . LT.XBCK)) THCI)=THCI)+3.141592 -
. Css CONTINUE pe
3
g -~- CALCULATE PANEL LENGTHS --- "
DO 36 I = N+1,M Lo
K = I+1 N
ACI) = SQRT(C{XBCK+1)=-XB(K))%X2+(YB(K+1)-YB(K))*%2) Ny

36 CONTINUE R
DO 35 I = N+1,M+1 o
XBCI) = XB(I+1) LN

= YB(I+1)

YB(I)
35 CONTINUE

2
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ECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE
<

Cc NON-LIFTING PART (2-BODIES) g

C

CCCCCCCCngCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DO = »

c

C --- CALCULATE ANGLE BETA AND NORMAL COMPONENT OF FREE STREAM :
C VELOCITY ---

c

BE(Id= TH(I)+3.141592/2.
V(I) = -(COS(BECI))%COSCAN)+SINCBE(I))*XSINCAN)) -

CALCULATE INFLUENCE COEFFICIENTS OF NORMAL VELOCITY ---

DO 37 J = 1,M
IF(I.EQ.J) GO TO 37
B = (XMC(I)=XB(J))*COS(BECI))+(YM(I)-YB(J))%SIN(BE(I))
c COS(TH(J))*COS(BECI))+SIN(TH(J))IXSINCBE(I))
E = 2.
F
H

o000
|
[}
|

COSCTH(J))%(XMCI)=-XB(J))+2 . XSINCTH(J)IIX(YM(I)-YB(J))
(XMCI)-XB(J))I%%2+(YM(I)-YB(J))%x2
SQRT(G . XF-EX%2)
Z(IpJ) = TEG(B;C’E'F;H!A(J))
37 CONTINUE

2(I1,1)=3.141592
36 CONTINUE

nonxn

c
C --- SOLVE SET OF LINEAR EQUATIONS FOR SOURCE STRENGTHS ~---
C
IDGT = 0.
5 c CALL LEQT2F (Z,1,M,200,V,IDGT,WKAREA, IER)
§ C --- CALCULATE INFLUENCE COEFFICIENTS OF TANGENTIAL VELOCITY =---
C
3 DO 33 I = 1,M
9 DG 39 J = 1,M
; IF(I.EQ.J) GO TO 39
B = (XMCI)=-XB(J))XCOSCTHC(IDY+C(YMCI)=YBCJ))IXSINCTHC(I))
C = COSCTHCJ))IXCOSCTHCI))+SINCTHCJ))XSIN(TH(I))
E = 2.%COSCTHCJI) ) X(XMCI)~XB(J))+2 . XSINCTH(J))X(YMCI)-YB(J))
F = (XMCI)-XBCJ))*%%2+{YM(I)-YB(J))%x%2
H = SQRT(G.XF-EXX%2)
Y(I,J) = TEG(B,C,E,F,H,A(J))
39 CONTINUE
,1)=0.0
33 CONTINUE
c WRITE(8,95)
g --= CALCULATE TOTAL VELOCITY AND CP AT MIDPOINTS OF EACH PANEL ---
DO 40 I = 1,M
S=0.
DO 41 J = 1,M
S = S+V(JIXY(I,J)
61 CONTINU
VV(I) = COSCTHCI))XCOSCAN)+SINCTHC(I))XSINCAN)+S
CPCI) = 1.-VV(I)%%2

WRITE(8,93) I,XM(I),YM(I),VV(I),CP(I)
40 CONTINUE
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ECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE

¢ LIFTING PART (2-BGDIES) ¢
S ECCCCCECEEEEEEEeeeetEeeeeeteeeeeteeeeeeeeeteeeeeeeeeeeeCeeCeeeeeeet
€ -—= CALCULATE SOURCE STRENGTHS DUE TO CIRCULATORY FLOM OF UNIT
¢ STRENGTH PAST FIRST BODY ---
¢ DO 42 I = 1,M

. Do 43’ 4z L

IF(J GT.N) G=0.
S = S+Y(I,J)xG

V1(I)=3

43 CONTINUE

42 CONTINUE
IDGT =0.
CALL LEQT2F (Z,1,M,200,V1,IDGT,WKAREA,IER)

--- CALCULATE DISTURBANCE VELOCITY DUE TO CIRCULATORY FLOW OF UNIT
STRENGTH PAST FIRST BODY ---

o000

DO 44

»

1
9.
5

I
S
DO 4 i M

J.GT.N) G=0.
S+Y(I,JI)%XV1(JI+Z(I,J)I%G

VC1(I)=S

F

N-QO. X

o~ n

45 CONTINUE
46 CONTINUE

RFFRODUCED AT GOVERHMFIIT FYITNST

c
C -=- CALCULATE SOURCE STRENGTHS DUE TO CIRCULATORY FLOW OF UNIT
¢ STRENGTH PAST SECOND BODY ---
DO 66 I = 1,M
. - S = 0.
DO 47 J = 1,M
G = 1.
IF(J.LE.N) G=0.
S = S+Y(I,J)%G
47 CONTINUE
v2(1)=s

46 CONTINUE
IDGT=0.
CALL LEQT2F (Z,1,M,200,V2,IDGT,WKAREA,IER)

~-— CALCULATE DISTURBANCE VELOCITY DUE TO CIRCULATORY FLOW OF UNIT
STRENGTH PAST SECOND BODY =---

[21eXnXe]

DO 48 g 1 M
DO 49 J = 1 M

IF(J LE N) G=0.
S = S+Y(I,J)%V2(J)+Z(1,J)xG

VC2(I)=5

69 CONTINUE
48 CONTINUE
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c
g -=-- CALCULATE VORTEX STRENGTHS BY KUTTA CONDITION ---

VC1(1)+VC1(N)

VC2(1)+VC2(N)

=VV(1)-VV(N)

VC1(N+1)+VC1l(M)
VC2(N+1)+VC2(M)
=VV(N+1)-VV(M)

= (X3%X4-X1%X6)/(X6G%X2-X1%X5)
= (X3-X2%SI2)/X1

CALCULATE TOTAL VELOCITY AND CP AT MIDPOINTS OF EACH PANEL ---

WRITE(8,96)

bo 50 I =1,M
VT(I) = VC1(ID%SI1+VC2(1)%SI2
VVV(I) = VVCI)+VT(I)
CP(I) = 1.-VVV(I)xx2
WRITE(8,93)1,XM(I),YM(I),VVV(I),CP(I)

CONTINUE

WRITE(6,97)

FORMAT(1X, 'COMPUTATION COMPLETED")

STOP

END

=== THIS FUNTION EVALUATES THE INTEGRALS (INFLUENCE COEFFICIENTS) ---

FUNCTION TEG(B,C,P,Q,R,S)
TERM1 = ALOG((SX%2-PxS+Q)/Q)
TERM2 = ATAN((2.%S5-P)/R)-ATAN(-P/R)
TEG = -CXTERM1-/2.+(2.%B-CXP)XTERM2/R
RETURN
END
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IV. BOX METHOD

A. INTRODUCTION

The thin shear layer equations are more complicated than
Laplace's equation because they are nonlinear. This chapter
presents the box-method, which can be applied to the solution
of the thin shear layer equations. The box method was intro-
duced by Keller in 1970 [(Ref. 4].

One of the basic ideas of the box method is to write the
governing system of equations in the form of a first-order
system. This system is solved by finite-difference approxima-
tions and Newton's method is applied to solve the equations.
Finally, the resulting linear system is solved by the block-

elimination method.

B. FALKNER-SKAN TRANSFORMATION

The thin shear layer equations for incompressible laminar

flow take the form

Ju oV _
_8___X+__ay = 0 (4.1)
Ju au 1 dp Bzu
ua—x+"w='aa‘§+vgz (4.2)
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I and at the edge of the boundary layer s
N y
-~ !
\ y > o u = Ue(x) (4.3) -
; ‘
: :
N It is convenient to reformulate the equations using the

™ il
™ streamfunction and the similarity concept. Therefore the i N
N Falkner-Skan transformation is introduced. F
. w7
U, 1/2 rRel/? N
N ne G Y s Y (4-4) g
N -
5 1

- v(x,y) = (U, vx) /Zf(x,n) (4.5)

5 Substituting Egs. (4.4) and (4.5) into Eg. (4.2), we get the

transformed momentum equation for 2-D laminar flows.

T ° T
e+ Mleen yn-en?) = xe il -en2h) e '

£ r
s

du
e

m = i___
- U dx

e

(dimensionless pressure-gradient)

[t DI I
o PRI,

with the boundary conditions

{

N .
~
ho
g
»




.
e N
S50 .‘- -

If £ is a function of n only, the right-hand terms of Eq.

(4.6) will be zero. Then this will be a third-order ordinary

N RLLS

differential equation whose solution is well-known as a 7

"similar flow." But, if f is a function of n and x (non-

v S N L A"

similar flows), we need a numerical procedure, such as the

v box method. "
2 :
g ’
e C. NUMERICAL FORMULATION (BOX METHOD) g
i F A
© First of all, the coordinates (x,y) of a given geometry
;E must be transformed to coordinates ({,n) to apply the Box F
[ ch
E method (see Figure 4.1). ﬁ
U .
-
< A
ol )
-8 5y
13 x
. g RS
[ © » Stagnation Point
[*N - : bey
L BOX b
- . % ki > A
Uy
%, -
7oA . S
K l/ . -
5 \ n&a' T hj <
3 ' ; -~
4 n - \ - -
. /BQX",} ' n. g ;
. 7]"‘ H gz N ' R - [
’ ‘ 1 E B Si-4 54 4
5 ' . : A
_] £ g é’ b
':/‘-] jl =

Figure 4.1. Transformed Coordinates of Upper Surface
3 Airfoil and Net Rectangle for Difference
Approximations

-
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]
U [
X The boundary layer thickness in transformed coordinates is ;
d d
\ 3
X nearly independent of the streamwise distance and can be Q
4 3
represented by a fixed number of profile points at fixed -
] v
‘ spacing. %
[ .
: One of the basic ideas of the Box method is to write the 4
governing system of equations in the form of a first order F
- {
)] system. We write Eg. (4.6) in terms of a first-order system >
y of PDE's :
: £' = u(g,n) (4.8a) 2
- \
: N
, u' = v(g,n) (4.8b) b
: :
: ov) '+ e + ma-u®) = g B - v 3 (4.8¢c) N
EX3 EX3
9 where a prime denotes differentiation with respect to n .
: ]
v i*
" and b = l+vJv f
5 .
y with the boundary condition ‘s
£(¢,0) = 0, u(g,0) = 0, wu(g,n) = 1 (4.9) .@
.;
. We denote the net points shown in Figure 4.1 as i
: g
= = ¢ 1 = ':.
' go = 0 «Si Si-1 + ki i 1,2,...,1I ;._
ng = 0 Ny = Nyt hy j=1,2, WJnp =N, -
(S
70 -
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And we can introduce the following approximations:

E—— -

A) Coordinates of midpoints (£ ;,n ;) and net functions

i-3 372
(g stands for £, u or v)
} -1 - 1
’ Ei__:_l'_ = E(gi +£i_l) nj--]; = i(nj +nj_l) (4.10a)
} 2 2
. i-% _

) S R & i-1 i - 1,1 i
1 gJ = f‘(gj +gj ) g_ 1 = f(gj +gj_1) (4.10b)
b -—

1732
b

where [ 1> means the guantities (f or u or v) at point (&.,n.).
| i

J

B) Finite-difference approximation

From Egs. (4.8a) and (4.8b), the centered-difference

derivatives are

(4.11a)

(4.11b)

After introducing these approximations into Eg. (4.8) and

rearranging (the known quantities are moved to the right hand
side), we get the equation (4.12c) which is centered about the
point (& 1N l). This represents the relationship of quan-

l—_— -——

tities bet%een %he points of the box.

...................................
------------------------
S
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(4.12b)

i i i i
| ~by_1vio))/hg + oy (£v)

.1
)

(4.12c)

{-L. 1 +a[(fv). l—(u ).
77

b.v.-b. .v.
33 T3=-1"j-1 m+1 2
{ R + —=(fv) +m[l-(u%) l]}

J i-5 i-3

i-1

The last of the above equations is non-linear. Therefore we

introduce Newton's method to solve this system. We set

(n+1) (n) (n)
) = ) + 8qg. =0,1,2,...
gj 93 9] r ’

where the superscript in parentheses is the iteration counter

with initial condition

-y Y T ¥ N e
b .

L 3
.
,
S
t
4
-




E 0) _ 0) (0) _  _i-1 4
: fo = 0 uo = 0 Vo = v, i
p o
h A
(0) i-1 (0) i-1l (0) i-1

f. = . \ = . . = . .
3 fJ uJ uJ vJ vJ (4.14) ?
E.
(0) _ .i-1 _(0) _ (0) _  _i-1 P
. fJ = fJ uJ 1 VJ VJ .
1<3j<al 2

Introducing Eq. (4.13) to Egq. (4.12) and dropping the quadratic

Fal &

N |

terms in g.

i+ We get (superscripts i and n are dropped for

—v . v -
o

] simplicity) b,
Ei
4 ij - ij-l - 2(Guj + 6uj_l) = (rl)j (4.15a) e
t ;
h o
_i :
Guj - Guj-l - 2(6vj + ij_l) = ‘r3)j-l (4.15b)
p
o
. .+ . N . . N . ‘wtd
(Sl)JGVj (SZ)JGVJ_f-(S3)36fJ + (S4)36fj_l &
+ (Ss)jéuj + (Ss)j5uj_l = (r2)j (4.15c) ;
where all terms are explained in Reference 5, with the -
boundary conditions 3
::
b
\-‘;
dfo = 0 duo = 0 duJ = 0 (4.16) .
Y
Y
N\
D. BLOCK ELIMINATION METHOD §
e

This is a very effective way to solve linear difference

equations, discussed by Keller in 1974 [Ref. 6]. We write

73
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Eq. (4.15) in a matrix-vector form

where

where

By Cp

By & G
By

(1 0 o ]

0o 1 0

A = r

,

1

(s

g

-45/2 0
(8g);  (5)
1 0

J

(4.17)




(r3)

eca v

la]
[
]
o R
[\8)
[
b AL,

According to Keller's block elimination method, we have to

Lttt

factorize the matrix A. N

A = P xQ (4.18) 2

SeTe o
. ‘D Al

"a

where

e A

g .

-

,
s
rd
L IET

LA ]

A

.
L
g

.f
s,
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1 0 0
I = 0 1 0
0 0 1

From Eg. (4.18), we find that

0, = A (4.19a)

Pj0s_; = By j=1,2,...,3 (4.19b)
. = A,-P.C. j = 1,2,... 4.19

Q; Ag-PiCi 1 3= 1,2,....3 ( c)

Keller showed that the matrix Pj has the same structure as

e
the matrix Bj' From Eq. (4.19), we derive the elements of 5

Pj and Qj'
((pll)j (Py2)y  (P13)y
Pyo= | (ra1)y  (Ppa)y  (P23)y
0 0 0
(qll)j (qlz)j (q13)j
Q) = | laa)y (@) (ap3)y 0 <3 <J-1
L 0 -1 -hy,)/2

/

...............................
...........
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Each element of Pj and Qj is éxplained in Reference 5. If

we let

Q§ = W (4.20)

Introducing Egs. (4.20) and (4.18) into Eq. (4.17),

PW = r (4.21)

Then, from Eq. (4.21), we find that

Wog = 1
W. = r. - P.W. 1<5 <4
j 5 T P3¥5-1 =1z

The elements of Wj are listed in Reference 5. Finally, we

get the matrix form to get § from Egqg. (4.20).

% o (8, W,

9 . 6 W
. ~ = : (4.22)

Q-1 Cs-1
Qs Sy Wy
L PARN / ~ /
From Eq. (4.22), we find that

QJGJ = wJ (4.23a)
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3

6. = W.-= C.6. j = J-1,3-2,...,0 4.23b R
QJ J J J J+l J J ’J ’ ( ) N

Al

Therefore Gj can be obtained by calculating the terms Qj’ Cj ;

and Wj (see Reference 5). N
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V. INTERACTION METHOD

A. INTRODUCTION

Interactive methods provide a special coupling between
viscous and inviscid flows. They are intended to compute
flows including separation. Thus these methods may be regarded
as an alternative to the Navier-Stokes solvers, which are
hardly engineering tools because of their huge computer time
and storage requirements.

The classical method to compute viscous flows past airfoils
proceeds as follows: The velocity distribution is computed
by any appropriate inviscid flow solver. The output of the
inviscid flow solver becomes the input of the viscous flow
solver. Solving for viscous flow consists of integrating the
boundary layer equations. Provided that the flow remains
attached this procedure allows a reliable prediction of 1lift
and drag. Information is transferred only once from inviscid

to viscous regions. However, many flows cannot be modelled by

one-time information transfers.

Separation bubbles and separated flows especially require
a close coupling between viscous and inviscid regions. Inter-
action schemes provide a better exchange of information between
these two regions.

The elements of interaction schemes are: direct or inverse

inviscid flow solver and direct or inverse viscous flow solver.




J ‘Boundary Condition
> Flow Direct Inverse

I v v v m w r w

Inviscid + Zero normal + Prescription of
velocity at velocity
N - the surface distribution

s =¥ 74T

. Viscous - No slip - No slip condition

condition - Prescription of

- Prescription of displacement
external thickness
velocity -

LR A |

The direct boundary layer method has the disadvantage that -
the boundary layer equations are singular at the point of -1

separation. However, if the external velocity is computed

M N N2,
Y’

by prescribing a displacement thickness (known as the inverse

Pl i

boundary layer method), they can be integrated through the

2T
-7

point of separation.

*

The next problem associated with the regions of reversed

flow is numerical instability, because downstream marching

CARKARAS: -

- procedures cannot be applied in regions of reversed flow.

The most common approximation to get this instability under
control, the so-called FLARE approximation, neglects the
momentum transport term u Jsu/3x in regions of reversed flow as
long as this region is small. However, as the size of this

region increases, the FLARE approximation becomes inaccurate.

e -
| AT
.

b, One of the procedures which can be taken into account is
called the DUIT (Downstream, Upstream Iteration). It consists

of a sequence of alternating up and downstream sweeps.

KA RTINS

2

p There are several types of recently developed interaction

models. All procedures have to solve both the inviscid (Laplace
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P
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equation) and viscous flow, whose equations can be written

according to

au oV _
_3__}? + W = 0 (5.1)
dU
au ju  _
u X + v 3-1_7 = e T (b\)ay) (5.2)

R e R R TN T o o A RN T R LS

2RI

where

T TR

b = 1 = constant in laminar flow

b=1+ vt/v in turbulent flow

Four interaction models can be distinguished: Direct, Inverse,

Semi~inverse, and Simultaneous interaction methods which are

LSS LY.,

subject to different boundary conditions.

The most advanced interaction scheme is the simultaneous

-y

interaction. We call it the "strong interaction" (direct and
inverse interactions guarantee weak coupling only). Examples

in Section V.D are computed by the Cebeci program using this

LA ARt )

LN

method. Good agreement is obtained between the results of

interaction schemes and experimental results.

4o MR L

B. FOUNDATION OF THE INTERACTION SCHEMES

1. Direct Interaction Scheme

The direct interaction model is composed of a direct
inviscid and a direct viscous flow solver (see Figure 5.la).

The usual sequence is:

S AR B .®_. .4 TENER .7, T

81
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SN s B NG e R SN el i s N e B MG AL A
Airfoil * *
geometry IHVISCID & (%) vViscous £ (x)
—_—— {Direct) - {Inverse) €
l uc\:\‘) Ue(x)
Y
Airfoil .
vIScous geometry INVISCID
N - 1 -
(Direct) —_— Inverse)
DIRECT .
a) DI b) INVERSE
Airioil Airfoil
geometry geomectry
| i
S Y
INVISCID l VvISCOUS INVISCID
.Direcz) ' !Inverse) (Direct)
x
* 1 u (){
¥y & () e0 ’
5 (%) W ‘ | Tnitial guess of
() ; gdispzacemen: thick-
v o 1€SS distribution
CONVERGENCE? V1SCOUS *
. B 5 (x)
u . MN)-p =(}? !
e‘]( ) LeI()\) 07 + ,__!
. INTERACTION law !
|
u ,(*()1 u (%) ; '
el eV ‘ i ..
\ ¥ | | OVERRELAXATION
> ! ' e
RELLNATION Bl et 8
. 3
. N0 i‘ 5“(:<)
CCNVERGENCE? :
| *
15 o(%)
&
c) SEMI-INVERSE d) SIMULTAKEQUS

Figure 5.1. Global Organization of Interaction Methods
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e
N
(1) Calculate the external velocity distribution by e
inviscid flow computations. z;
t
(2) Calculate the displacement thickness, §*, by viscous %
flow computations using the external velocity as o
boundary condition. %‘
\J
(3) Compute an updated shape of the displacement body and ﬁi
repeat steps 1 and 2 until the results converge. O
L)
Unfortunately, the direct boundary layer method suffers by
4 numerical breakdown at the point of separation (Goldstein g
N
singularity). Therefore this scheme is not appropriate to ?
handle airfoil flows with separation. o
1 2. Inverse Interaction Scheme E‘
p »
9
This method was introduced to overcome the singularity bf
f problems near separation. It combines an inverse inviscid and oy
i an inverse viscous flow solver (see Figure 5.1b). However, ﬁ
i the overall procedure suffers from very slow convergence. -3
: Due to this shortcoming one shall apply this inverse scheme %
3 .‘v’
{ to regions of separated flow only. {'
i
q 3. Semi-Inverse Interaction Scheme :ﬂ
] This method combines a direct inviscid flow solver A
b "
E with an inverse viscous flow solver with the same input (dis- ]
] N
b placement thickness). This leads to two external velocity -
. distributions, UeI(x) and Uev(x) (see Figure 5.1c). Satis-~ N
factory convergence is ensured by a relaxation formula, which Q_
is introduced to define an updated displacement thickness N
; distribution. S
. e
Uev(x) ‘o
* = * —_— -
Gnew(x) 5old(x)[l + w(UeI(x) 1)} {(5.3) 2
3 h
r f:\'
: 3
-
r
"
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where w is a relaxation parameter. The numerical weakness of
the purely inverse scheme is improved by this method, but
both inviscid and viscous regions are still coupled loosely.

4. Simultaneous Interaction Scheme

The simultaneous interaction scheme emphasizes strong
interaction between the outer inviscid and the inner viscous
region. The external velocity Ue(x) and the displacement
thickness §*(x) are treated as unknown quantities. An addi-
tional relation is added, the so-called interaction law which
can be given by the "blowing velocity" concept.

The equaticus are solved by the inverse method with
successive sweeps over the airfoil surface (see Figure 5.1d).
This method is compatible with the weak interaction scheme
where both inviscid and viscous regions are coupled loosely.

For each sweep, the external velocity for the boundary

layer equation is written as

. 0
U (x) = U_(x) + GUe(x)

UZ(X) is the inviscid velocity;

SUe(x) is the perturbation due to the dis-
placement effect of a boundary layer.

The blowing velocity concept is introduced to get the pertur-

bation velocity GUe by the interaction law. The displacement




effect of a boundary layer can be modelled by ejecting fluid

]

\ at the airfoil's surface (see Figure 5.2). :
’ 1
£

D 4 R
Yh !

5 . 5:
! -
. -7 * . "y 7 :}
Y 4’ & (x) IV(‘\'O)-0<'\)/‘ 'i
f— dx — x 7 __‘

.

e Y
o «4
b

; Figure 5.2. Blowing Velocity Concept N
2 2
& A properly arranged source distribution on the surface dis- "
) 2
.3 . '.'
3 places the streamlines away from the surface such that the "
. virtual displacement body becomes a streamline. N
K Our first goal is to determine the source strengths such ;
d that the tangential flow condition on the displacement body 3t
: takes the form -
i t
1’ ‘._
2 vix,8*) _ dé* Ny
e 4
‘I .:-
A To achieve this goal we use the thin airfoil approximation: o
. b
“ L
(1) The displacement thickness is assumed to be so x
: small that u-velocity components do not vary across -
. the layer. !
; (2) The airfoil in this connection can be represented by N
2z a straight line. This approximation implies that .~

the blowing velocity v (x,0) equals half of the
source strength.
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Therefore,.

3 = V(xro)

oV
= vix,8*) - fo a—y'dy
du
= dé* e
= U Tax ta o
= 9y s
= dx(Ueé ) (5.6)

where §§(Ueé*) is defined as blowing velocity. Our second

goal is to relate the perturbation velocity, GUe to the blowing
velocity. This process is quite similar to evaluating tangen-
tial velocities in the panel method. 1In fact, this is even

simpler because of the straight line surface.

X
b
_ 1
U, = 37/

X
a

o(§)
X —F dg (5.7)

where the interaction region is limited to a finite range
Xy £ X < %, This integral is referred to as the Hilbert
integral. Rewriting Eq. (5.4), we finally obtain the inter-

action law.

_ o 1 d
U (x) = UJ(x) + = fx g (U™ =% (5.8)

=

3

-

- .




The numerical implementation of Eq. (5.8) requires a discrete
approximation of the Hilbert integral. This can be performed
by using the trapezoidal rule.

The examples in Section V.D demonstrate that this inter- g
action method can give reliable results for flows up to high &
angle of attack, including flows with bubbles and separation.
C. CONSIDERATION OF BOUNDARY LAYER TRANSITION AND OF

TURBULENT FLOW MODELLING

1. Transition

; One of the most important parameters to predict the

drag and 1lift of an airfoil is the transition point. Boundary

layer transition is affected by many parameters, for example,

the pressure distribution (major parameter), the wall roughness

and the intensity of the free stream turbulence, etc. Because

of this fact, the theoretical modeling of transition is very

complicatad and one therefore resorts to experimental

information.

In the Cebeci program, the following experimental

correlation formula is used, which was given by Cebeci and

Smith (1974) as a relation between R

6 and ReX at transition.

22400)Re0'46

Re X
tr xtr tr

R = 1.174(1 +

5 (5.9)

.....................

.........
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.....
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and 8 is the momentum thickness.

2. Turbulent Flow Model

Unlike laminar flows, turbulent flows have a compli-
cated time-dependent behavior. It is too difficult to deal
with the instantaneous properties. Thus, the mean-flow
properties are applied in turbulent flow.

The most common mean-flow models are the "eddy-

viscosity" formula which are based on thin shear layer

assumptions.

du
- tapt = —
pu'v PV 3y (5.10)

where Ve is related empirically to the mean flow velocity
gradient and the length scale. 1In the Cebeci program, Ve
is presented by the algebraic eddy-viscosity formulation of

Cebeci and Smith.

{0.4y[1l-exp(-y/A)]}

2153
oy Yer

o

| [O(Ue-u)dletrY

More detailed descriptions are listed in Reference 7.

D. EXAMPLES
The subsequent examples were computed using a program

developed by Cebeci and coworkers [Ref. 17], on the NPS IBM 370.
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1. Demonstration of the Program Capabilities

The velocity profiles on both upper and lower surfaces,
as well as in the wake, are presented in Figure 5.3. At
this angle of attack (a = 10°), transition occurs very close
to the leading edge on the upper surface. The boundary layer
thickness is quite thin in the accelerated flow region (right
after the leading edge), but it grows thicker farther down-
stream in the decelerated flow region (near the trailing edge).
Eventually, we find a small reversed flow region just before
the trailing edge in this case. The wake region shows the
mixing layer which decays with increasing downstream distance.

Figure 5.4 demonstrates how lift, drag and the loca-
tion of transition depend on the angle of attack. The skin
friction drag is dominant at lcw angles of attack, the pressure
drag at high angles of attack (se=2 Figure 5.4Db).

Figure 5.5 shows the distributions of the skin friction
coefficient, displacement thickness and shape parameter in
dependence of Reynolds number and angle of attack. 1In the
attached flow, the skin friction coefficient decreases along
the downstream direction until the point of transition
(laminar region), but increases steeply after transition and
then decreases again because the skin friction is related to
the slope of the velocity profile, Jdu/dy, at the surface. At
high angles of attack, transition on the upper surface occurs
close to the leading edge and the negative skin friction

coefficient near the trailing edge indicates separated flow.
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Also the displacement thickness and the shapeparameter increase
drastically in regions of separated flow (see Figure 5.5a).

At low Reynolds numbers, laminar flow can separate at
mid-chord and reattach (we call this phenomenon a "bubble").
Reattachment can often occur if the pressure gradient de-
creases rapidly soon after separation, so that a strong reversed
flow is not established. Thus the shear layer reattaches onto
the surface. Accordingly, the displacement thickness and the
shape parameter increase in the bubble region (see Figure
5.5b). .

2. Comparison with Experimental Results

The comparison of pressure distributions is shown in
Figure 5.6. The overall 1lift of inviscid calculations devi-
ates 20% from the experimental results. The interaction method
improves the accuracy, but the computation still overestimates
the 1lift. The lift coefficient obtained by Cebeci's program
i1s approximately 10% larger than the measured one (see Reference
8).

Figure 5.7 demonstrates that the accuracy of this method
drops with lower Reynolds numbers. The reasons for this de-
creased accuracy at low Reynolds numbers are the higher proba-
bility to separate and the used turbulence model, which seems
to be inappropriate for low Reynolds numbers. Therefore, low
Reynolds numbers and high angles of attack pose severe limi-
tations (see Figure 5.7a & b). The experimental results are

taken from References 7 and 9.
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On the other hand, experimental measurements should

not be expected to be exact. Turbulence level and interference
effects influence the wind tunnel measurements. Figure 5.7c
shows good agreement between computed and experimental results
taken from Reference 10, at low Reynolds numbers.

The location of transition and separation points have
an important influence on the lift and drag coefficients.
Figure 5.8 shows that the prediction of laminar separation,
reattachment, transition and séparation points on the airfoil
surfaces are in reasonable agreement with the experimental

data taken from Reference 9.
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VI. SUMMARY AND RECOMMENDATIONS

N
N

'This thesis treats the problem of incompressible two-
dimensional steady flow past airfoils or airfoil combinations
at large angles of attack. A panel method was developed to
compute the inviscid flow over two cylinders, airfoil-flap
combinations and airfoils in ground effect. In addition,

Cebeci's viscous/inviscid interaction method was applied to

several airfoils and compared\#ch available experimental

data. The agreement is generally quite encouraging. The
calculations show the sensitivity of the computations to
Reynolds number and transition. More work is required to
evaluate the potential and limitations of the viscous/inviscid

interaction method.:
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